Seeing it the Hard Way

Well, you have been hacking that C program for a month now. You know, the
one that is the Swiss Army[] knife of UNIXC tools. There isn’'t a Nobel prize for
software but if there was one this tool of yours would win it. Perhaps if you sent
it to the executive committee in Stockholm for evaluation they would be moved to
establish the new category. Something tells you that they don’t accept floppy,
tape or American Express[], so you are going to have to print it out so they can
read it. Well, why don’t you just pr all those files to /dev/| p? If you are the
only one on your system then this should not present a conflict of interests. But,
if you share a system with others then your output could be mixed on the page
with the person next door if they decide to print their files at the same time. This
is the basic problem that the UNIX Line Printing (LP) sub-system solves — it
schedules asynchronous events (i.e. print-jobs) to be processed in a sequential
manner for a given resource. This basic resource management problem is
compounded by printer characteristics (e.g. baud rate, character sets, print-
wheels, fonts, PostScriptl]), media (e.g. pre-printed forms, high-quality paper,
envelopes, labels), connectivity (e.g. the printer is attached to another node),
and restricted user access. Providing a sub-system to effectively and efficiently
manage these resources is a job at which the SVR4 LP sub-system excels.

Printing technology does not seem to be considered a glamorous technology
unless it is Display PostScript or Scalable Fonts. But, there are no less than a
zillion details associated with printer resource management. This is because the
characteristics of the logical and physical devices that control what we may think
of as printers can be as diverse as the printers themselves. | have hinted at
some of these issues already and although there isn’t enough room in an entire
year of this magazine to deal with all of them, we will deal with some of the ones
that do fit and are useful to the mainstream.

What is a Printer?

This may sound like a silly question, but it is actually a good one. This is
because a printer is not always a “printer.” A printer can be a printer, like a dot-
matrix or PostScript printer, or it can be something really different like a
typesetter, pen-plotter, 35mm slide generator, or a one-way FAX card. In fact it
could be just about any batch-oriented device. You could even use the LP sub-
system to control backup jobs to one of your 9-track tape machines or archive
requests to your WORM farm!

What is a Sub-System?

LP consists of two standing servers (or daemons) — | psched and | pNet —
and several administrative and user commands. | psched is started when the
system is booted and is the primary scheduler for printer devices. | pNet is

started by | psched and is used by | psched to manage network devices and
handle the transfer of print-jobs between remote systems. All the commands
communicate with | psched using a finite message set and pipe based
interprocess communication. The administrative commands are used to
configure and control the LP sub-system. They are:

| padm n is used to define logical printers, their attributes and their
accessibility by users.

| psystem is used to define the communication attributes of remote
systems.

[pfilter is used to define filters and their abilities.

| pf orns is used to define logical media.

| pusers is used to define print-job priority values to specific users.

accept is used to start the queuing of print-jobs to a printer.

reject is used to stop the queuing of print-jobs to a printer.

enabl e is used to logically start a printer (i.e. it is now on-line).

di sabl e is used to logically stop a printer (i.e. it is now off-line).

| prove is used to move print-jobs assigned to one printer to another
printer.

| pshut is used to shut down the LP scheduler (I psched).

The user commands are used to submit, monitor and cancel print-jobs. They
are:

I p is used to submit files for printing — i.e. it creates a print-job.

| pstat is used to check the status of the entire LP sub-system including
print-jobs.

cancel is used to cancel print-jobs.

What's New?

A new feature in SVR4 is the ability to network printers with complete LP
semantics. That is, you don'’t lose control of the print-job once it leaves the client
system. Cancelling a print-job from the client will cancel it on the server; stating
print-jobs on the client will tell you what is happening to them on the server; and,
changing the print-job specification on the client will change it on the server. The
new networking capabilities also include SVR4 to BSD connectivity. This allows
print-jobs from SVR4 systems to be sent and received from BSD systems. So, if
you are slowly migrating from BSD to SVR4, you need not worry about which
system is your print server. They already know how to talk to each other.

Furthermore, a BSD user migrating to an SVR4 system will feel right at home if
the Compatibility Package (an SVR4 add-on) is installed. In it are the same
functionally equivalent commands found on a BSD system. These include

o | pr
« | pc
- lIpq
« |l prm
« | ptest

PostScript support is also new. The SVR4 implementation comes with filters and
drivers that facilitate printing on PostScript printers. As you probably already
know, PostScript is a language. A PostScript printer does not accept raw ASCI|
input. Everything going to a PostScript printer must be in the form of a
PostScript job. That is, it must be a PostScript program. The filters provided
convert a particular type of output (e.g. ASCII, ditroff) into PostScript. The
drivers that are provided download fonts and handle communication details with
the physical printer.

What Does it Do?

Once printers are defined, queuing and on-line, the most used commands are
the user commands. The | p command parses its arguments and composes a
message that represents the context of the print-job and sends it to | psched.
The files that are to be printed are not sent to the LP scheduler, they will be
printed from wherever they live. Some notable options available to the user at
this point are:

+ Print N copies of the print-job.
+ Notify the user via mai | or writ e when the print-job has printed.

+ Delay the print-job until the specified media (e.g. special pre-printed forms,
high-quality paper) is in use on the printer.

« Delay the print-job until the specified character-set or print-wheel is in use on
the printer.

« Arbitrarily hold the print-job until released.

« Specify printer-dependent options that are passed on to the interface-
program that drives the printer.

« Submit the print-job at a specified priority-level.

Now that the user has submitted a print-job, they can track its progress in the
gueue, using | pst at. The user can also make changes to the queued print-job
using | p. If the user decides to abort the print-job, they may cancel it, even at
the point when it is printing, using cancel .

When a print-job makes it to the head of the queue for the printer to which it was
assigned, | psched will fork() and exec() the interface-program that drives
the printer. The interface-program knows how to control the printer based on its
term nfo entry that describes its capabilities and printer-model specific
information that can’t be represented any other place. The SVR4 LP sub-system
comes with two interface-programs. The one of interest here is called
st andar d and it handles a diverse majority of printers. Since it is a shell-script,
it is also intended to serve as an example of the various issues associated with
driving a printer, as well as describing the calling interface between it and
| psched. This is so that a site could write their own for a non-standard “printer”
like a FAX card.

Interface-programs are also responsible for detecting printer faults (e.g. out-of-
paper, physically off-line) and reporting these back to | psched. The scheduler
then reports these faults to the administrator via some alert mechanism (.e.g.
mail, write to system console) which is defined when the printer is defined.

It Slices!
The definition of printers and their capabilities is administered using | padm n.

In its simplest and complete form for local printers, | padm n is used to specify
the logical printer-name, the logical device to which the physical printer is

attached, the term nf o entry that contains the definition of the capabilities of
the printer, the content-types the printer will accept, and the interface-program that
drives the printer. For example, to configure a PostScript printer / dev/| p

| padmin -p psl -v /dev/termi0O0 -T PS -1 PS -m PS

This looks confusing, that is because the printer-type (the term nfo entry
specified with - T), the content-type the printer will accept (specified with -1),
and the interface-program that drives the printer (specified with - m, all happen
to have the same name. The term nfo entry PS and the interface-program
PS are supplied with the SVR4 implementation.

At this point you might ask "If the content-type of the printer is PS and the file |
want printed is a simple ASCII file, how will it ever print?" (This is the magic part.
Watch the hands closely.) LP has a mechanism called filter pipeline construction
that is driven by a data file called the filter description table. This filter-table is
administered using the | pfilter command. A filter is simply a process that
reads the standard-input and converts the data to some new form and writes it to
standard-output. A command as simple as pr could be a useful filter.
| pfilter also allows the user to specify the options to be used with a filter
based on shell-like regular-expression (i.e. ™, '?’, '[a-z]) evaluations of the
arguments passed to the | p command, when the print-job was submitted.

Based on the filter-table, | psched can dynamically construct filter pipelines to
convert one file content-type to another. The filter-table delivered with the
system contains the following filter-descriptions

U name Uinput-type Houtput-type

Epostprint Esimple Epostscript

::dpost Htroff H postscript

[download Upostscript Upostdown

Epostio = postdown a PS

mOoHpgOomQ

| psched reads the filter-table and matching input-type with output-types,
dynamically constructs a filter pipeline that converts the given content-type of the
file to the desired content-type that the printer can handle using multiple filters if
necessary. This pipeline is then passed to the interface-program that drives the
printer at the time the print-job is sent to the printer.

In the case of the PostScript printer the ASCIl file would be submitted to
| psched using

I p -dpsl ascii_file

The content-type of a simple ASCII file is termed si npl e and the default
content-type that the | p commands assumes is si npl e. That is, it contains
only printable ASCII characters. If the file is of some other type, this is specified
using the - T content-type optionto | p. Inthisexample, the pipeline would look like

postprint | downl oad | postio
If the user had submitteda t r of f’ d file using

I p -dpsl -Ttroff troffd_file
the the pipeline would look like

dpost | downl oad | postio

The downl oad filter checks the PostScript output passing through it for use of special
fonts that may be stored on-line, which it then downloads into the PostScript stream. The
posti o filter is a special filter in that it doesn’t convert its input but instead it knows
how to hold a conversation with the PostScript printer. That is, PostScript printers talk
back to you when you ask them and sometimes when you don’t. A kind-of verbose flow
control. The posti o ‘“*filter’” knows how to respond to this dialogue.

Although this example was PostScript specific the versatility of this mechanism should
be obvious. There really is nothing special about filters. In fact this is a basic UNIX
system paradigm. And, although the LP sub-system comes with a pre-built filter-table the
administrator is free to add new filters as a site requires. There is even an option to
| pfilter forrestoring the filter-table to its original delivered state if it gets corrupted.

It Dices!

LP also provides for the management of logical forms and access control. Now that we
have print-jobs printing on our PostScript printer lets assume that the printer is used to
print on cheap paper, expensive 20Ibs. bond with the company letterhead, envelops and
labels. Forms are defined using the | pf or ms command. The definition of a form can
include such attributes as the page size and the required character pitch. These attributes
get passed to the interface-program that drives the device so that it can prepare the printer
to print the data properly on the form. There is also an alignment-pattern attribute. It
defines the pattern to print on the printer while aligning pre-printed forms (e.g. checks,
invoices, purchase orders).

In this example we will use the simplest form definition which is a comment. In afile
called f or m def we place the following:

Comment: Special PostScript form

Our formswill becalled cheap, bond, envel op, and | abel . Now we define the
forms using

for f in cheap bond envel op | abel
do

[pforms -f $f -F formdef

I pforms -f $f -A mail
done

The first | pf or s command names the form and says use the form definition in file
form def. Thesecond | pf or ms command takes advantage of the alert feature. The
alert feature notifies the administrator when a print-job that requires a specific form has
been queued. The aert type specified is the mai | type. When the first print-job that
requires one of our special forms to be mounted on the printer is queued the administrator
will be notified by mail. There are other aert types, including any arbitrary shell
command.

By default anyone can use each of our forms and our printer. We could restrict access to
the printer using

| padmin -p psl -u allow jeffp

This would restrict the printer to the local user j ef f p. This can be useful if the printer
is set aside for printing sensitive or proprietary information, or the printer is expensive to
operate (e.g. atypesetter) and you don’t want users experimenting with it. Since the form
bond is expensive and it has the company letter head on it, we would like to restrict its
use to only users who have aneed to useit. Thisisinstead of restricting the entire printer
to use by asingle user or group of users. Thisis done by

| pforms -f bond -u allow jeffp
Now only the local user j ef f p can queue jobs requiring the form bond.

Now that our forms are defined we need to modify our printer definition to allow those
forms to be mounted and to mount the default form. The command

| padmin -p psl -f allow cheap, bond, envel op, | abel

specifies that these form can be used with this printer. Currently we have cheap paper in
the paper tray of the printer so the command

| padmin -p psl -M-f cheap

logically mounts our default form. Print-jobs sent to ps1 that request the cheap form

will now be printed on the cheap paper unless they are specified to need a different form.
Print-jobs that do not specify a form are not printed until the specia none form is
mounted. So we don’'t have to require the user to specify the cheap form at all. We
can leave the cheap paper in the printer and mount the none form. To print afile on the
high-quality bond the user would specify

Ip -dpsl -f bond -T postscript letter.ps

If the user submitting the request is j ef f p then the print-job will be accepted. The - T
post scri pt options simply states that the file | etter. ps contains a PostScript
program. The filter pipeline will be shortened accordingly when the print-job is finally
sent to the printer.

Since the bond form is not currently mounted the administrator is notified by mail that
the a print-job has queued that requires the form. The print-job will stay in the queue
until the form is mounted. This entails taking the printer logically off-line using
di sabl e, filling the paper tray with the high-quality bond paper, logically mounting the
form using | padm n, and then logically bringing the printer back on-line with
enabl e.

Its Over There!

As was mentioned previously, LP is capable of networking with other systems. That is,
any system on a network that has a printer attached to it can act as a server for that printer
to other systems on the network. Also, any system on the network can be a client of any
server. The networking feature requires that you have a network and that it is configured
properly. Since thisis an article about Printing Technology, network configuration will
not be discussed here. But, once your network isinstalled, networking a client and server
LP sub-system is a simple matter.

Since our PostScript printer is already defined, our system will act as the server. Each
system needs know about the other. On the server system the command

| psystem -t s5 -T never -R no client

adds the system cl i ent to the list of systems alowed to send print-jobs to the server.
It also specifies that the client isa SVR4 (-t s5) system, never timeout a connection
(- T never) and that lost connections should not be retried (- R no) — i.e. let the
client call the server. On the client system the command

| psystem -t s5 -T never -R 10 server

adds the system server to the list of systems to which it can send print-jobs. The

difference here is that the client retries the server after 10 minutes (- R 10) if the
connection is lost. The server printer is aready configured. The client defines the same
formslocally and incants

| padmin -p renote_ps -s server!psl -T PS \
-1 sinple,troff, postscript \
-f cheap, bol d, envel op, | abel
#
start queuing print-jobs to local printer 'renote_ps’
#
accept renote_ps
#

start sending print-jobs to renote printer ’'psl’ on system

' server’
#
enabl e renote_ps

and all the capabilities of the printer ps1 that a user on the server has are now available
to auser on the client. The content-type specification

-1 sinple,troff, postscript

forces filtering to occur on the server system.
You Can Even Get To It From Your Application

At this point it should be clear why you don’t wantto cat, pr,or write() directly
to / dev/ | p. But, I'll stateisagain.

1. /dev/| p may bebusy but not locked.

2. /dev/l pisnotaways /dev/| p. Sometimesitis /dev/term 00, a seria
device with all the hassles of baud-rate and special character processing.
/ dev/ | p isnot always connected to afriendly, ssmple *‘printer.”’
If you want to get at printers through an application — i.e. via C code — use the Section
3S popen() or system() functions. The popen() function creates a bi-
directional pipe between your process and the shell command-line you give it. Using it
you can write the data you want printed directly into the | p command. For example:

-10 -

i nt
PrintData (char *destp, char *bufp)
{
char cndbuf [128];
FI LE *pi pep;
(void) sprintf (cndbuf, "/usr/bin/lp -d%", destp);
pi pep = popen (cndbuf, "w');
if (! pipep)
return 0;
(voi d) fprintf (pipep, bufp);
(void) pclose (pipep);
return 1;
}

Using the syst en() requires that you aready have the data you want printed in afile
on disk. For example,

IP?lt ntFile (char *destp, char *pathp)
{ char cndbuf [128];
(void) sprintf (cnmdbuf, "/usr/bin/lp -d% %",
dest p, pathp);
return system (cndbuf);
}

It is a Swiss Army Knife!

The LP sub-system in SVR4 is rich with functionality. In fact, we have just skimmed the
surface of its most useful features. So, before you re-invent the wheel for your
application, look and see what the system is already providing you.

-11 -

Acknowledgements

| would like to thank Carey Hines for his help in reviewing this article.

Bibliography

[1]

(2]

(3]

[4]

(5]

UNIX System V Release 4: System Administrator's Guide, Prentice
Hall, Englewood Cliffs, NJ, 1990.

UNIX System V Release 4: System Administrator's Reference
Manual, Prentice Hall, Englewood Cliffs, NJ, 1990.

UNIX System V Release 4: User’'s Guide, Prentice Hall, Englewood
Cliffs, NJ, 1990.

UNIX System V Release 4: User's Reference Manual, Prentice Hall,
Englewood Cliffs, NJ, 1990.

UNIX System V Release 4: Programmer’s Reference Manual, Prentice
Hall, Englewood Cliffs, NJ, 1990.

