
Pearls from the ABI — Dynamic Shared Libraries

I am sure you have heard the term Application Binary Interface (ABI). It is one of
those buzzwords we cannot escape in these times of standards and "One UNIX

system for all the masses." Simply stated, it means that an executable compiled
on one machine architecture should run without recompilation on another
machine of the same architecture. This seems intuitive and is likely true if the
machines are from the same manufacturer because this implies the same UNIX
’port’. But, different manufacturers using the same machine architecture are free
to port the UNIX system in their own way. For example, ABC Microsystems’ UNIX

port to their Intel 80386 box is not guaranteed to be identical to XYZ

Microsystems’ port to their 386 machine. In pre-SVR4 days and with the various
flavors of the UNIX system, this was chaos.

When an application makes a call to a system call such as read(), read()

calls a function called systrap() with an index. This function, systrap(), is
the real entry-point into the kernel. The index passed to the kernel via
systrap() represents the service being requested (e.g. ’read’ or ’write’).
Different UNIX versions and ports can use different systrap() indices. That is,
the ABC Microsystems’ kernel recognizes 4 as the index for ’read’ where the
XYZ kernel uses 5. An executable compiled and statically linked on one
company’s machine would have undefined results if executed on the other
company’s box. The operative phrase here is statically linked. Statically linked
executables contain the code for the functions they use. This includes system
calls. The version of the system call code is appropriate only to the machine on
which they were compiled and linked.

New to SVR4 are Dynamic Shared Libraries (DSL). DSLs are the fundamental
solution to providing Application Binary Compatibility. Now an executable linked
with the DSL version of libc (which is where the code for the system calls is
located) is guaranteed to run across UNIX boxes of the same architecture. This
is due to the machine specific version of read() being dynamically linked in at
execution time.

A Solution with Utility

The beauty of DSLs is that not only do they facilitate the the ABI but that they are
an elegant solution with utility far beyond that of static linking. Applications
linked with DSLs:

- 2 -

• Are automatically updated when a new library is installed.

• Save physical disk space.

• Contribute to overall system performance.

Consider all the commands that reside in /usr/bin. Most of these commands
are compiled and linked with the DSL libc.so.1 When a command like pr is
executed, the DSL is mapped into the process space, and then subsequent calls
to stdio functions like printf() are dynamically resolved the first time they
occur. If a bug were later found in the stdio portion of libc.so, a new
library could be built and distributed to customers. Applying the bug fix would
simply require replacing the libc.so on your system. All the applications that
made use of the library would pick up the fix the next time they were executed.

Dynamic shared libraries also save space. Again, consider the commands that
reside in /usr/bin. Let us assume they are all linked with libc.so and use
the stdio printf() function. If these executables were all linked with the
static version of libc, they would all contain the code for printf() and
whatever other code printf() uses. Furthermore, let us suppose that they
are all executed simultaneously. This would result in the kernel creating
separate physical pages in memory containing identical printf() code.
Excessive paging can have a significant detrimental effect on overall system
performance. Since the /usr/bin commands are all linked with libc.so

they all share the same code from the same physical location on disk as well as
in the kernel. So, not only is space conserved but system performance is
improved.

Easy to Use

Unlike the static shared libraries of pre-SVR4, DSLs do not require any special
coding techniques. This is due to improvements in the SVR4 C compilation
system. Aside from compiling ANSI C compliant code, the new CCS features a
Position Independent Code (PIC) generator and a new object file format. The
new object file format ELF (Executable and Linking Format), replaces the old
COFF format and is also a fundamental part of an efficient and elegant ABI

_ ______________

1. The ’.so’ suffix stands for ’shared object’.

- 3 -

solution. ELF facilitates DSLs by providing a richer format for expressing what
the process image of an executable should look like.

Creating a DSL is very simple. The command:

cc -G -K PIC file_1.c file_2.c file_3.c -o libfoo.so

creates the DSL libfoo.so from files 1, 2 and 3. The -G flag specifies that a
DSL is to be created and the -K PIC option tells the compiler to generate
position independent code. DSLs can be created out of non-PIC code but the
benefits of sharing are lost.

Performance is Everything

The real win you get from using DSLs is improved overall system performance.
By reducing the dynamic system memory requirements, improvements on the
order of 20-30% in system performance can be achieved. This is because if the
kernel needs to create and manage fewer pages, these page faults, which result
in memory pages being read and written to disk, are less likely.

There is some overhead associated with the dynamic linker. The dynamic linker
is the utility that maps the DSLs used by your process into your process space at
execution time before main() receives control. As calls are made to functions
in the DSL, the dynamic linker intervenes to resolve references. This lazy-
evaluation occurs only once for each function called. Thereafter, function calls
go directly to the function being called. The default lazy-evaluation method can
be overridden at run-time via an environment variable. Setting
LD_BIND_NOW=1 will result in all function references being resolved before
main() receives control. The down-side to this is that references get resolved
for functions that may not be called.

The execution of a process that is linked with a static library such as libc.a,
may out-perform the execution of the same process linked with an equivalent
DSL. The timing statistics, both system and user, of 20 users simultaneously
executing a statically linked pr will be less than the timing statistics of 20 users
executing a dynamically linked pr. All users share the same read-only memory
pages in both examples, but the second group has the overhead of the dynamic
linker. But, consider 20 users simultaneously executing 20 separate statically
linked commands from /usr/bin. The timing statistics gathered here will be
greater than 20 users simultaneously executing the same dynamically linked
commands. The reason is that: the overhead of the dynamic linker is
cumulatively small compared to the overhead of the kernel creating and faulting

- 4 -

on the 20 (or more) separate pages it must manage for each version of the
library code in the statically linked processes. That is, each statically linked
process will have a copy of the library code it uses in memory at execution time.
The dynamically linked processes will be sharing one copy. Therefore, the
kernel creates less pages, and less page faults are incurred.

Although creating a DSL does not require special coding techniques, to reap the
full complement of benefits for using DSLs there are some guidelines one should
follow when writing functions that are to be part of a DSL.

• Minimize the Library’s Data Segment
All executables and shared objects (i.e. DSLs) have a text segment (read-only
data such as executable code) and a data segment (writeable data). The text
segment of all executables and shared objects is shared amongst all
processes executing those objects. However, the data segment is not
shared and is considered private writeable space for each process.
Furthermore, space is set aside in the executable for the references to global
data in the DSLs with which it is linked. At run-time, this writeable data is
copied into the process space. Therefore, minimizing the data segment of
the shared library reduces the run-time overhead of copying this writeable
data into the process’ space and reduces the number of non-shared pages
the kernel creates for the client process.

There are several approaches to minimizing the data segment of a DSL.

1. Use automatic (stack) variables versus static storage. For example,

int

foo (char *arg1)

{

char buf [256];

...

}

performs better than

- 5 -

static char buf [256];

int

foo (char *arg1)

{

...

}

2. Use functional interfaces versus global variables. This serves two
purposes: 1) in general it makes the code easier to maintain; and 2) it
eliminates the copy of global data from the shared library into the users
data segment at execution time. This latter point is especially important
when there is tabular data embedded in the library. Consider an
executable that is linked with a DSL that has a global table. A place for
that table at run-time is statically reserved in the executable at link-time.
There are two penalties for this: 1) there is a performance hit for
copying the table from the DSL into the users data segment at run-time;
and 2) if a new DSL should be installed with a larger table, the
application, unless re-linked, will not see these changes beyond the
previous size of the table.

As an example,

static const char * table [] = {

"foo string 0",

"foo string 1",

...

"foo string N",

};

const char *

fooString (int i)

{

if (i < 0 || i >= sizeof (table)/sizeof (table[0]))

return 0;

return table [i];

}

is preferred over

- 6 -

char * table [] = {

"foo string 0",

"foo string 1",

...

"foo string N",

};

In addition, note the use of the type qualifier const in the preferred
example. This identifies table as read-only data. Read-only data is
stored in the shared object’s text segment. This is another performance
plus over writeable data. It is stored in the shared object’s data
segment and, as pointed out earlier, every user of the shared object
gets a private copy of its data segment.

3. A corollary to the last item would be to exclude functions from the DSL

that use large amounts of global data if they could not be rewritten.

4. Endeavor to make a DSL self-contained with respect to global data. If a
shared library directly references global data in another shared library
then even more data space is reserved and copied into the process’
data segment at run-time (as per item 2).

• Minimize Paging Activity
Processes that use shared libraries may still incur page faults on the shared
read-only text pages. Page faults will degrade performance. There are a few
techniques to use in writing a shared library to minimize paging activity.
These methods are rather advanced and mostly related to the specific
architecture of the machine on which the library will reside. Therefore, since
such architecture specific topics can bring a lighthearted article like this to its
knees, they will not be discussed here. They are discussed in [1].

Even More Crafty Uses

As if the things I have described already aren’t enough reason to use DSLs I
offer another example of their crafty use. Applications that are linked with DSLs
can be said to use these DSLs ’implicitly’ at run-time. But, it is also possible to
use DSLs ’explicitly’. That is, you may have 2 or more DSLs that contain
functions of the same names and interface syntax (i.e., calling arguments and
return values) but the functions of one library do something semantically different
than the same named functions in one of the other libraries. Your application is
not dynamically linked with any one of these libraries. Instead, at run-time, the

- 7 -

application can decide which semantics are desired and call the dynamic linker
directly to link in the appropriate library.

So, your probably saying to yourself: "Cool. But, why would I want to get this
weird? I have a normal social life." Other than the fact that we sometimes get
paid to be weird I offer the following real world example. A new feature to SVR4

is Network Selection and Name-to-Address Mapping . Given that SVR4 supports
numerous network providers it provides a mechanism for finding a particular
service on a specific host across a specific network provider. DSLs play a very
clever part of this system service.

Different transports (i.e., network providers like TCP and STARLAN) use different
address formats as well as certain conventions. That is, network addresses
have a human readable form and a machine readable form. The system file
/etc/inet/hosts contains the human readable addresses and corresponding
host names accessible using TCP/IP. The entry 192.11.109.144 snafu

represents the main address of the system snafu. Service ports are also
transport dependent. The system file /etc/inet/services contains known
port and service names. The entry fubar 6666/tcp represents that service
fubar can be found on port 6666. This address and port are combined in a
transport specific manner to produce a transport specific address of the service
fubar on the system snafu.

Now consider an application that would like to connect to service fubar on the
system snafu. This application would start by using a set of functions called
netconfig functions, to find a network provider on the local system that is
suitable for use. netconfig functions parse the system file
/etc/netconfig similar to the way the getpwent() functions parse
/etc/passwd. Once a suitable network provider was found, the netdir

functions would be used to find the address of service fubar on the system
snafu. netdir functions do name-to-address mapping. Given a network
provider, a host name and a service name netdir_getbyname() will search
the appropriate system files and return the transport specific address of the
requested service on the named host.

So, where do DSLs figure into all this? Consider the format of
/etc/netconfig. The fields of this file are:

• The name of the transport (e.g., tcp, starlan).

• The semantics, like connection-oriented or connection-less, of the transport
(e.g., tpi_cots, tpi_clts).

- 8 -

• Flags. The only flag currently defined is v for whether the transport is
available for use or not.

• The protocol family of the transport (e.g., inet, osi).

• The protocol name of the transport (e.g., tcp, udp).

• The device to use for access to the transport (e.g., /dev/tcp,
/dev/starlan).

• The path of the DSL to use to do the provider dependent name-to-address
mapping (e.g., /usr/lib/tcpip.so, /usr/lib/starlan.so).

Now consider the following code fragment.

#include <netconfig.h>

#include <netdir.h>

struct nd_addrlist *

FindServiceAddress (char *hostp, char *servicep)

{

void * handlep;

struct netconfig * ncp;

struct netbuf * nbp;

struct nd_hostserv ndhs;

struct nd_addrlist * ndalp = (struct nd_addrlist *) 0;

handlep = setnetconfig ();

while (ncp = getnetconfig (handlep))

{

/*

** ’ncp’ holds a parsed record from

** /etc/netconfig.

** Is it a transport we can use?

*/

if (ncp->nc_semantics != SEMANTICS_WE_NEED)

{

/*

** Wrong communication semantics.

- 9 -

*/

continue;

}

if (strcmp (ncp->nc_protofmly, PROTO_FAMILY_WE_NEED))

{

/*

** Wrong protocol-family.

*/

continue;

}

ndhs.h_host = hostp;

ndhs.h_serv = servicep;

if (netdir_getbyname (ncp, &ndhs, &ndalp))

{

/*

** The service on the host we requested

** cannot be contacted on this provider.

*/

ndalp = (struct nd_addrlist *) 0;

continue;

}

/*

** We found a host with the service we want

** on the provider we can use. So return

** the address of the service.

*/

break;

}

endnetconfig (handlep);

return ndalp;

}

The dramatic role that DSLs play in all this is in the netdir_getbyname()

function. This function uses the netconfig record pointed to by ncp to find
the correct DSL that searches the correct files (e.g., /etc/inet/hosts and
/etc/inet/services) and does the transport dependent mapping of host and
service, to network address. The important point here is that the application
calling FindServiceAddress() will be dynamically linked with libnsl.so,
the Network Services Library which contains the netconfig functions and the
facade for the netdir functions. But, libnsl.so does not contain the text of

- 10 -

the functions netdir uses and the application is not linked with any of the DSLs
that do. The explicit dynamic linking is done by the netdir_getbyname

function based on the content of the /etc/netconfig entry passed to it.

The explicit use of DSLs saves space by relieving libnsl.so from having to
contain the text of all the transport specific name-to-address mapping functions
of all possible network provider. Furthermore, functionality is enhanced since
network applications will be able to make use of new network providers as they
are added to the system.

In Closing ...

Dynamic shared libraries are not an absolute panacea. In fact, DSLs can be
used improperly. Some commands that are small and whose execution is
typically short lived can negatively impact system performance by using DSLs.
Despite this, DSLs are an excellent solution to many application engineering
problems. Not the least of which is application binary compatibility.

Bibliography

[1] UNIX System V Release 4: Programmer’s Guide: ANSI C and
Programming Support Tools, Prentice Hall, Englewood Cliffs, NJ,
1990.

[2] UNIX System V Release 4: Programmer’s Guide: Networking
Interfaces, Prentice Hall, Englewood Cliffs, NJ, 1990.

[3] UNIX System V Release 4: Programmer’s Reference Manual,
Prentice Hall, Englewood Cliffs, NJ, 1990.

